Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Cell Proteomics ; 20: 100134, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1356359

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global health pandemic. COVID-19 severity ranges from an asymptomatic infection to a severe multiorgan disease. Although the inflammatory response has been implicated in the pathogenesis of COVID-19, the exact nature of dysregulation in signaling pathways has not yet been elucidated, underscoring the need for further molecular characterization of SARS-CoV-2 infection in humans. Here, we characterize the host response directly at the point of viral entry through analysis of nasopharyngeal swabs. Multiplexed high-resolution MS-based proteomic analysis of confirmed COVID-19 cases and negative controls identified 7582 proteins and revealed significant upregulation of interferon-mediated antiviral signaling in addition to multiple other proteins that are not encoded by interferon-stimulated genes or well characterized during viral infections. Downregulation of several proteasomal subunits, E3 ubiquitin ligases, and components of protein synthesis machinery was significant upon SARS-CoV-2 infection. Targeted proteomics to measure abundance levels of MX1, ISG15, STAT1, RIG-I, and CXCL10 detected proteomic signatures of interferon-mediated antiviral signaling that differentiated COVID-19-positive from COVID-19-negative cases. Phosphoproteomic analysis revealed increased phosphorylation of several proteins with known antiviral properties as well as several proteins involved in ciliary function (CEP131 and CFAP57) that have not previously been implicated in the context of coronavirus infections. In addition, decreased phosphorylation levels of AKT and PKC, which have been shown to play varying roles in different viral infections, were observed in infected individuals relative to controls. These data provide novel insights that add depth to our understanding of SARS-CoV-2 infection in the upper airway and establish a proteomic signature for this viral infection.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno/fisiología , Nasofaringe/virología , Proteoma/análisis , COVID-19/inmunología , COVID-19/virología , Cromatografía Liquida , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Interferones/inmunología , Interferones/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Quinasa C/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Opioides/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo
2.
J Proteome Res ; 20(8): 4165-4175, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1320213

RESUMEN

Since the recent outbreak of COVID-19, there have been intense efforts to understand viral pathogenesis and host immune response to combat SARS-CoV-2. It has become evident that different host alterations can be identified in SARS-CoV-2 infection based on whether infected cells, animal models or clinical samples are studied. Although nasopharyngeal swabs are routinely collected for SARS-CoV-2 detection by RT-PCR testing, host alterations in the nasopharynx at the proteomic level have not been systematically investigated. Thus, we sought to characterize the host response through global proteome profiling of nasopharyngeal swab specimens. A mass spectrometer combining trapped ion mobility spectrometry (TIMS) and high-resolution QTOF mass spectrometer with parallel accumulation-serial fragmentation (PASEF) was deployed for unbiased proteome profiling. First, deep proteome profiling of pooled nasopharyngeal swab samples was performed in the PASEF enabled DDA mode, which identified 7723 proteins that were then used to generate a spectral library. This approach provided peptide level evidence of five missing proteins for which MS/MS spectrum and mobilograms were validated with synthetic peptides. Subsequently, quantitative proteomic profiling was carried out for 90 individual nasopharyngeal swab samples (45 positive and 45 negative) in DIA combined with PASEF, termed as diaPASEF mode, which resulted in a total of 5023 protein identifications. Of these, 577 proteins were found to be upregulated in SARS-CoV-2 positive samples. Functional analysis of these upregulated proteins revealed alterations in several biological processes including innate immune response, viral protein assembly, and exocytosis. To the best of our knowledge, this study is the first to deploy diaPASEF for quantitative proteomic profiling of clinical samples and shows the feasibility of adopting such an approach to understand mechanisms and pathways altered in diseases.


Asunto(s)
COVID-19 , Proteoma , Humanos , Nasofaringe , Proteómica , SARS-CoV-2 , Manejo de Especímenes , Espectrometría de Masas en Tándem
3.
EBioMedicine ; 69: 103465, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1293743

RESUMEN

BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.


Asunto(s)
Prueba Serológica para COVID-19/métodos , Inmunoensayo/métodos , Espectrometría de Masas/métodos , Animales , Antígenos Virales/química , Antígenos Virales/inmunología , Automatización de Laboratorios/métodos , Automatización de Laboratorios/normas , Prueba Serológica para COVID-19/normas , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/inmunología , Humanos , Inmunoensayo/normas , Aprendizaje Automático , Espectrometría de Masas/normas , Fosfoproteínas/química , Fosfoproteínas/inmunología , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA